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Thermal Diffusivity of Solids with a Low 
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A dilatometric method is presented, suitable to obtain both thermal diffusivity 
and conductivity of low-conducting solids with a low expansion coefficient. The 
repeatibility of the measurements of thermal conductivity is 3 %, whereas that 
for diffusivity is 5 %. Data for fused silica at room temperature are given, consis- 
tent with those reported in the literature. Since the method is based on detecting 
the thermal expansion of a copper disk in thermal contact with the specimen, 
its range of applicability is linked to the sensitivity by which the dilation of 
copper can be measured: no difficulty arises between liquid nitrogen and 
1000~ 
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1. I N T R O D U C T I O N  

The accuracy  of the rmal  diffusivity measurements  is increased by reducing 
the uncon t ro l l ed  heat  exchanges  between specimen and envi ronment .  
Sat is factory  results  in this d i rec t ion  can be achieved by  a new m e t h o d  
[1, 2]  which has  recent ly been deve loped  for the de t e rmina t ion  of  the rmal  
diffusivity of  low-conduc t ing  solids with a high the rmal  expans ion  coef- 
ficient and  is based  on  the analysis  of  the expans ion  of the specimen in 
con tac t  with a hea t  source.  In  the present  paper ,  we descr ibe the extension 
of  the m e t h o d  to low-conduct ing ,  l ow-expand ing  materials .  

The  exper imenta l  a p p a r a t u s  used for this k ind  of  solids is shown in 
Fig. 1. The  specimen S is inside a hol low cyl inder  G of  the same mater ia l ,  
which acts as a the rmal  guard .  This  system is pu t  on a copper  disk C1 
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Fig. 1. Schematic view of the experimental apparatus. 

surrounded by an insulated electric wire J1, which is connected to a current 
generator. The Joule heat engendred in this way by J1 is rapidly transferred 
to C, (where the temperature at any time can be considered as independent 
of the space coordinates, owing to the high conductivity of copper) and 
then slowly to S, which is characterized by a low thermal diffusivity. In this 
way C1 works as a heat source for the specimen. A thermocouple T 1 

inserted into C1 is used to record the time behavior of the temperature 
of the heat source. On the upper base of S we put a second copper disk C2, 
surrounded by the corresponding copper guard G', which lies on G. The 
principle of the method consists of recording, as a function of time, the 
thermal expansion of C2 as a consequence of the transfer of heat from C1 
to C2 through the specimen S. The analysis of this experimental function is 
sufficient to provide both the thermal diffusivity and the thermal conduc- 
tivity of S. The thermal expansion is easily detected by means of a capacitor 
having one plate represented by the fused silica disk Da which is supported 
by C 2. The contact between C 2 and D~ consists of a fused silica tripod. 
The contact area between D~ and the three pins at 120 ~ of the tripod is 
negligibly small, so that the heat lost by conduction trhough the pins is 
correspondingly negligible. Also, the heat lost by radiation through the 
upper face of C2 is negligible if the experiment is performed in vacuum and 
the copper surface is well polished. The second plate of the capacitor is the 
annular fused silica disk D2. The two facing surfaces of D1 and D2, as well 
as their lateral borders, are coated by a conducting film of tin oxide. The 
distance between D~ and D 2 c a n  be adjusted by means of three leveling 
screws K pressing on a hollow cylinder of fused silica, H, supporting D 2 

and fixed to the base B. 
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In order to know the correspondence between the change of gap 
between D1 and D2 and the capacitive signal, one has to perform a calibra- 
tion [2] of this signal. For this purpose, the disk C1 is put on a cylinder 
of Zerodur Z (glass ceramic of very low thermal expansion coefficient, 
0.5 x 10 - 7  K 1), and this in turn on the copper disk Co, lying on the fused 
silica base B. Having switched on the current in the electric wire Jo 
surrounding Co, one simultaneously records the temperature change 0 ~~ of 
this disk with respect to the environment (by means of thermocouple To) 
and the time behavior of the capacitive signal. In the calibration experi- 
ment, such a signal is unambiguously due to the known thermal expansion 
of Co, namely, flcuho 0~~ where h o is the thickness of Co and flcu is the 
thermal expansion coefficient of copper. In fact, owing to the low thermal 
diffusivity of Zerodur, the height of Z (3.0 cm) is sufficient to prevent heat 
from reaching the copper disk Ca during the time of measurement. Conse- 
quently, the experiment consists of two steps: in the first step, one 
calibrates the capacitor by heating the disk Co; in the second step, one uses 
the heater C~, and from the analysis of the capacitive signal both the 
thermal diffusivity and the thermal conductivity of the specimen are 
deduced. 

By the equipment shown in Fig. 1, one achieves the important result 
of detecting a thermal field without perturbing the field itself. In fact the 
detector is represented in this case by the capacitor, which has no 
appreciable heat exchange with the underlying system S-C2. From 
this point of view, the present experimental arrangement represents a 
considerable improvement with respect to the sandwich described in 
Ref. 3, where we essentially used the system C1-S-C2 with a thermocouple 
inserted into C2. Though small, the presence of the thermocouple could 
introduce an uncontrolled source (or sink) of heat in the measuring system. 
In the present case, it has to be emphasized that the thermocouple inserted 
into C1 does not introduce any uncontrolled heat source, since the heat 
gained or lost through the thermocouple wires (or through the resistive 
coil J1) is included into the heat source itself. 

2. MATHEMATICAL FRAMEWORK 

The problem is unidimensional since the base of the specimen is 
uniformly heated and heat exchanges through the lateral surface are mini- 
mized by the thermal guard. Let k and k' be the thermal conductivities of 
the specimen and of copper, respectively, ~ and ~' the corresponding ther- 
mal diffusivities, and b and d the length of the specimen and of C2. Let us 
introduce a coordinate system (z) with the origin at the center of the lower 
base of the specimen and a system (z') with the origin at the lower base of 
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C 2. If the entire time interval of measurement is subdivided into N parts of 
equal width z, the heat exchanged between specimen and copper disks can 
be considered constant in each time interval tm+ 1 -- tm= r, provided ~ is 
chosen sufficiently small. We directly take from Ref. 3 the temperature 

Z r fields Om+l(Z) and 0 " + 1 ( ) ,  referring to the specimen and to the copper 
disk C2, respectively, at the time t m + 1 .  Owing to the boundary conditions 
imposed on the heat diffusion equation, their expressions vanish at t = 0, so 
that the above fields actually represent the temperature changes with 
respect to the environment. The fields are given by the expressions (valid 
for m~>l) 

Om + 1 ( 2 )  = ( Q m -  XQ'm)(atm +1 + �89 - Qmz/b + QoMz(tm +1) 

- ~ [ettp/b 2 + �89 +1 - tp)](Qp - XQ'p - Qp_l  + XQ'p_l)  
p = l  

+ ~ M z ( t m + l - t p ) ( Q p - Q p _ l ) - � 8 9  (1) 
p = l  

and 

t t t t 1 ! O m + l ( z ) = Q m [ ~ t m + l + g ( z  d)Z]/d 2 - 1  , - ~QoRz,(tm + 1) 

- ~ ( Q p - Q ' p _ l ) [ a ' t p / d Z + � 8 9  (2) 
p = l  

and by the expressions (valid for m = 0) 

01(z) = (Qo - XQ'o)(eta + �89 2 - Qoz/b 

- �89 Q~)) az(tl) + QoMz( t l )  (3) 

and 

0'l(Z') = Q'o[C~'ta + � 89  d)2]/d 2 - �89 (4) 

where X is the ratio (k'b)/(kd).  Gz(t), Mz(t) ,  and Rz,(t) are convenient 
functions obtained by imposing time continuity of the solutions and 
explicitly given in the mentioned paper [3]. Qm and Qm are proportional 
to the heat fluxes at the specimen contacts with C1 and C2, respectively: 
more precisely, 

(1)  1 - - 0 m + l ( 0 )  = Qmk/(bH)  (5) m +  

Om+ l(b) -- O" + 1(0) = Q'mk'/(Hd) (6) 
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where 0 (1) is the temperature change with respect to the environment as 
recorded by the thermocouple T~ inserted in C1, and H is a parameter 
depending on the nature of the thermal contact between specimen and copper 
[4]. As shown in Refs. 1 and 2, when the specimen is low-conducting and 
the contact is established through a thin layer of a conducting glue, the 
parameter 7 -- k /bH can be considered equal to zero. Inserting the previous 
expressions for Ore+ I(Z) and 0"+ l(Z') into the boundary conditions given 
in Eqs. (5) and (6), one obtains a system of equations in Qm and Q" which 
can be solved through a numerical procedure once a trial set of values 
(a, X) has been fixed. As in Ref. 2, we obtain the thermal expansion of the 
specimen and of the copper disk C2 by integrating the temperature fields 
over z. In this way, we arrive at the following expressions for the dilation 
of the specimen and of copper: 

dS +1 = fls [ (Qm - X Q "  )(atm +1 + b2/6)/b - (Qo - XQ'o)b/6 + l b(Qo Qm) 

(C~tp+bZ/6)(Qp - Q p - Q p  +XQ'p 1)/b 
- -  X ! 1 

p = l  

C 
dm+ 1 

p = l  

= flCu [Q'm(:C'tm +1 + d2 /6 ) /d -  Q'od/6 

-- ~ (Qp-Qp_ l ) (C( lp - t -d2 /6 ) /d ]  (8) 
p = i  

for m~>l, 

d s --//s [(Qo - XQ'o) atl/b] 

d c = ficu[Q'o(:c'tl/d)] 

(9) 

(10) 

for m = 0 ,  where fls and flCu are the corresponding thermal expansion 
coefficients. 

The capacitive cell D1, D2 detects the sum of the dilations of the 
specimen and of the copper disks C1 and C2, namely, 

d i = d S q- d C2 q- flCuhlO(1)(ti) (11) 

where h 1 is the thickness of copper disk C 1 and O(1)(ti) is its temperature 
change as measured by thermocouple T 1 at time t~. 
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Of course, the calculated value of d i depends on the choice of the pair 
(~, X); the value of e' is assumed to be known and equal to 0.93 cm 2. s -1 
[5]. The values of/~Cu and//s are assumed to be equal to 0.165 x 10  - 4  and 
0.627 x 10 -6 K -1, respectively [6]. Let us impose the best fit of d; to the 
experimental change of gap (d~)exp by minimizing the expression 

N 

~) = 2 [di-  ( d i ) e x p ]  2 ( 1 2 )  
i=1  

where i runs over all the times through which the whole time interval of 
measurement has been subdivided. This is easily done by exploring the 
behavior of 6 in the plane (~, X). The values of ~ and X for which 6 reaches 
its absolute minimum are taken as the correct experimental values of the 
above parameters. 

3. EXPERIMENTAL PROCEDURE AND RESULTS 

First of all, we performed the calibration of the capacitive cell by 
heating the copper disk Co and simultaneously recording the capacitive 
signal V(t) and the temperature change O(~ of Co. As in Ref. 2, the signal 
V(t) and the change of gap between the plates, dgap, are assumed to be 
linked by a quadratic relation, 

dgap = c 1 V--~- 0 2 V 2 (13) 

where cl and c2 are parameters to be determined. 
In the calibration experiment dgap is known and given by ~cuhoO(~ 

(see Section 1). Consequently, from a best-fit analysis it is possible to 
obtain the parameters (cl, c2) by which one can relate the thermal 
expansion to the electric signal. 

Once the system has reached its initial equilibrium conditions again, 
one proceeds to the second experiment by heating the disk C~. An example 
of heating curves for a specimen of fused silica with a length of 1.00 cm is 
shown in Fig. 2. The height of the copper disks C~ and C2 was 1.00 cm. For 
a given choice of (~, X) we evaluate the sum square deviation 

N 

6= 2 [di--C1Vi--c2V2]2 ( 1 4 )  
i = 1  

where di is given by Eq. (11) and Vi is the capacitive signal determined in 
this second experiment at time ti. Exploring the behavior of 6 as a function 
of ~ and X, one obtains a matrix of values like that shown in Table I, 
referring to a specimen of fused silica at 25~ From Table I, it is 
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Fig. 2. Heating curves obtained for a sample of fused 
silica. 0 (1) is the temperature change of the copper disk C1, 
and V(t) the capacitive signal. 

immediately possible to deduce the minimum value of 6, corresponding to 
the pair of values (8 x 10 3, 290). By performing several measurements on 
the same specimen of fused silica, a repeatibility of about  5 % in e, and 
about  3 %  in X, has been found. The mean values for ct and X are 
8.1 x 10 -3 cm 2. s 1 and 289, respectively. These values are in good agree- 
ment with those found in the literature [-6] and also with those obtained 
by means of an experimental apparatus in which the dilatometric sensor 
was substituted by a thermocouple inserted in C2 [-3]. We also performed 
a set of measurements on a specimen of Zerodur and deduced a mean value 
of 10.2 x 10 -3 cm 2 . s -1 for the diffusivity and 235 for X, in good agreement 
with the results obtained in Ref. 3. 

Table I. Values of the Sum Square Deviation 6, Given by Eq. (14), as a 
Function of the Thermal  Diffusivity ~ and of the Reduced Conductivity 
Ratio X = k'b/kd for a Specimen of Fused Silica at Room Temperature ~ 

X 6 7 8 9 10 

270 0.141 0.062 0.314 0.725 1.207 
290 0.635 0.149 0.029 0.106 0.287 
3 i0 1.435 0.655 0.263 0.084 0.159 

a The values of the diffusivities are given in 10 -3 cm 2 .s ~. 
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One point to investigate is the uncertainty affecting our measurements 
of ~ and X arising from experimental uncertainties connected with the 
reading of data. Let us consider an ideal specimen with ~ = 10 -2 cm 2. s 1 
X =  300, and length = 1 cm (copper disk C2 with a length of 1 cm) sub- 
jected to heating as shown in Fig. 2. 

Let us also assume an ideal situation with cl = 1 and c2--0. Under 
these conditions, we calculate the theoretical dilation and the correspond- 
ing signal function V(t).  By truncating each numerical value of this func- 
tion to the first decimal place, we simulate the reading uncertainty of the 
experimental data coming from the recorder. The function obtained in this 
way can be considered, in our computer experiment, as an "experimental" 
function to which our numerical procedure of data analysis can be applied 
in order to obtain the values of a and X giving b its absolute minimum. 
By comparing these values with those originally assumed for the two 
parameters,  we find relative deviations of the order 1%. Therefore this 
computer  experiment shows that part  of the absence of repeatibility of our 
results can be attributed to uncertainties in the data, due to the instabilities 
of the whole electronic equipment, of the temperature of the specimen, and 
so on. Another part  depends on the uncertainty affecting the determination 
of Cl and c2 in the calibration experiment (due, again, to the mentioned 
instabilities). In fact, if in the above computer experiment one gives cl and 
C 2 a resonable change of 1%, relative deviations of 4 and 2 % in ~ and X 
are found. 

In conclusion, the intrinsic accuracy of the present method is high, 
because the unwanted heat exchanges between specimen and environment 
are almost eliminated. The uncertainty of the measured values is essentially 
due to the presence of the thermal and electrical instabilities of the 
apparatus. Any reduction of these instabilities would be much more 
significant here than in other competitive methods, where a systematic 
error is always introduced by the temperature field detectors. 
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